
Technical Report

CMU/SEI-87-TR-17
ESD-TR-87-118
Carnegie-Mellon University

Software Engineering Institute

The Use of Representation Clauses
and Implementation-Dependent
Features in Ada:

III A. Qualitative Results for VAX Ada
Version 1.3

B. Cralg Meyers
Andrea L. Cappelllni

July 1987

I 20100827267

Technical Report
CMU/SEI-87-TR-17

ESD/TR-87-118
July 1987

The Use of Representation Clauses
and Implementation-Dependent

Features in Ada:
III A. Qualitative Results for VAX Ada

Version 1.3

B. Craig Meyers
Andrea L. Cappellini

Ada Embedded Systems Testbed Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This technical report was prepared for the

SEI Joint Program Office
ESD/XRS
Hanscom AFB, MA 01731

The ideas and findings in this report should not be construed as an official DoD
position. It is published in the interest of scientific and technical information
exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

\jJo^ QZAA
Daniel Burton
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense.

Copyright © 1987 by the Software Engineering Institute

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of
scientific and technical information for DoD personnel, DoD contractors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information
Center. Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.

Copies of this document are also available through the National Technical Information Services. For information on ordering.
please contact NTIS directly: National Technical Information Services, U.S. Department of Commerce, Springfield. VA 22161

Ada is a registered trademark of the U.S. Department of Defense. Ada Joint Program Office. MicroV/u, VAX. VAXELN and VMS
are trademarks of Digital Equipment Corporation

Table of Contents
1. Introduction 1

2. Discussion 3

3. Relation to Examples In Volume I 7

4. Summary 11

References 13

Appendix I: Questions Relevant to the Use of Representation Clauses and 15
Implementation-Dependent Features

CMU/SEHR-17

The Use of Representation Clauses
and Implementation-Dependent Features

in Ada:
IIIA. Qualitative Results for VAX Ada

Version 1.3
Abstract: This report, one in a series, provides a qualitative assessment of the support of
representation clauses and implementation-dependent features in Ada provided by the VAX
Ada compiler, Version 1.3. The evaluation questions that were presented in a previous
report of this series form the basis of the qualitative assessment. A subjective evaluation of
the support provided for these features is also presented.

1. Introduction
The Ada language was developed as a general-purpose language applicable to the development and
maintenance of mission-critical systems for the Department of Defense (DoD). In the development of
the language, a need to allow the language to interact with the underlying machine architecture was
recognized. This coupling is discussed in Chapter 13 of Reference Manual for the Ada Programming
Language [1].

A frequent characteristic of mission-critical systems is that they employ "packed" data structures.
Furthermore, within such packed structures there may be nonstandard data representations. For
example, an integer type may have a length of 12 bits, or some fixed-point type may have arbitrarily
scaled precision.

Such packed data structures are defined in Ada through the use of representation clauses. The use
of these clauses is highly machine dependent. That is, some compilers may provide only limited
support, while others may provide a full set of capabilities. Since representation clauses are imple-
mentation dependent, their use may affect the portability of any code which uses these features.

This report is one of a series of reports related to the use of representation clauses and
implementation-dependent features in Ada. The first report in the series, reference [2], provides an
overview of the use of representation clauses and implementation-dependent features and contains a
series of case study examples. A second report, reference [3], formulates a list of questions ap-
plicable to the evaluation of a particular compiler from the perspective of representation clauses and
implementation-dependent features. This is followed by a discussion of experimental procedures and
methodologies, in reference [4].

The purpose of this report is to provide a qualitative assessment of the support of representation
clauses and implementation-dependent features in Ada provided by the VAX Ada compiler. Thus, the
questions raised in reference [3] are answered here; the emphasis is principally qualitative. A quanti-
tative evaluation of the VAX Ada compiler can be performed from the perspective of reference [4J.

CMU/SEI-TR-17

The decision to assess the VAX Ada compiler was motivated by the following reasons. First, the VAX

Ada compiler was readily available and required no start-up time to become familiar with it. Second,
VAX Ada is a popular product and one that is in widespread use. Thus, the results would have a
greater impact by addressing a large audience. Finally, the project under which this work has been
performed will be using the VAX Ada compiler to implement an application representative of typical
real-time embedded systems, and an assessment of the support provided for representation clauses
and machine-dependent features would benefit that task.

This report is organized in the following manner: In Chapter 2, we present a discussion of the qualita-
tive results applicable to the use of representation clauses for the VAX Ada compiler and provide a
subjective interpretation of the detailed results. In Chapter 3, the relation between the results ob-
tained and the examples presented in reference [2] is discussed. This discussion illustrates the use
of qualitative results, such as reported here, for application-specific problems. A brief summary ap-
pears in Chapter 4, followed by a list of the applicable references. The actual results, which are
answers to specific questions, are provided in Appendix I.

This report has been prepared by the Ada Embedded Systems Testbed Project at the Software
Engineering Institute (SEI). The SEI is a federally funded research and development center (FFRDC)
sponsored by the Department of Defense and established and operated by Carnegie Mellon Univer-
sity. This report was prepared while the authors were on sabbatical leave at the SEI.

CMU/SEI-87-TR-17

2. Discussion
A basic goal of reference [3] was to define a set of questions relevant to the assessment of a partic-
ular compiler from the perspective of representation clauses and implementation-dependent features.
The questions, which appear in reference [3], are of a qualitative, as well as quantitative, nature. This
chapter provides responses to those questions for the VAX Ada compiler. The emphasis here is on a
qualitative level of assessment, and the reported results emphasize this aspect of evaluation. In
other words, the focus is on whether a particular aspect of representation clauses and
implementation-dependent features is supported and on the amount of support. Questions which are
principally quantitative in nature may be evaluated according to the methodology described in refer-
ence [4]. This delineation of VAX Ada compiler support is quite different from the issue of VAX Ada
compiler performance. While a complete assessment of support and performance of representation
clauses for the VAX Ada compiler is not yet available, we believe these results will be of interest to the
application development community.

We based the responses to the questions on the applicable documentation and selected generated
code of the VAX Ada compiler, Version 1.3 with VMS Version 4.5. The questions and answers are
presented in Appendix I. Relevant documents are cited in the following manner:

1. VLRM • VAX Ada, Language Reference Manual [5]
2. VRT = VAX Ada, Programmer's Run-Time Reference Manual [6]
3. VALM = VAXA/MS, Volume 7, Macro and Instruction Set Reference Manual [7]
4. DAP = VAX Ada, Developing Ada Programs on VAXA/MS [8]
5. RN = VAX Ada, Version 1.1, 1.2, 1.3, Release Notes [9]
6. DEC = [10]
7. VLINK = VAXA/MS Linker Reference Manual [11]

The questions have been divided into functional categories. For many questions, a full response can
only be obtained in terms of detailed assessment, and such questions have been so indicated. The
detailed assessment of such questions, whose response may involve performance assessments,
requires quantitative procedures. Here we use the term quantitative in a broad sense. For example,
a quantitative response may also include detailed examination of generated assembler code to ex-
tract information about the internals of the assessed compiler. The detailed responses for the quanti-
tative questions can be obtained using reference [4] as a guide.

Although the responses presented in Appendix I are qualitative in nature, they contain a considerable
amount of information. Naturally, the responses to the questions may stand on their own merit.
However, many users will desire an overview of the support provided for representation clauses and
machine-dependent features. To this end, we present a synopsis based on a subjective evaluation
and the following set of subjective criteria:

1. Full Support: The compiler provides support for the language feature subject to natural
limitations imposed on the hardware implementation.

2. Support with Minor Limitations: The compiler provides support for the language fea-
ture subject only to minor limitations. This implies, then, that the support provided
should be satisfactory for many applications.

CMU/SEI-TR-17

3. Support with Major Limitations: The compiler provides support for the language fea-
ture but there are major limitations. This means that use of the indicated language
feature in many applications would be difficult.

4. Unsupported: The compiler provides no support for the language feature.

We stress that the criteria listed above are subjective in nature. There may be cases where a
particular category is supported with only minor limitations. It may be, however, that the minor limita-
tions could cause a serious problem for some applications.

The results presented below basically correspond to the categories appearing in Appendix I. One
category not present in Appendix I yet deemed sufficiently important to include in this subjective
evaluation is that of support facilities, in which we refer specifically to documentation and debugging
facilities. Below, each category title is given, followed by its subjective rating. The rating is then
followed by explanatory information where it is deemed relevant.

1. Pragma OPTIMIZE: Full Support.
2. Data Types Supported: Full Support. VAX Ada provides additional representations of

integer and floating-point types beyond the scope of the language. Note, however, that
fixed-point types are restricted to a length of 32 bits.

3. Pragma PACK: Full Support. Note that fixed- and floating-point types may not be
packed; however, these objects are stored as fixed-length quantities.

4. Length Clauses: Supported with Minor Limitations. Fixed-point types must be
represented according to a constant size. This could present problems for certain ap-
plications.

5. Enumeration Representation Clauses: Full Support.
6. Record Representation Clauses: Supported with Minor Limitations. Where a record

contains a component of a fixed-point type, restrictions on the size of the component
may be a problem due to the limitations imposed by the compiler.

7. Address Clauses: Supported with Major Limitations. Note that an address clause is
only supported for objects.

8. Data Conversion and Assignment: Full Support. The result of
UNCHECKED_CONVERSION when source and target type differ in length may cause
problems for some applications.

9. Representation Attributes: Full Support. VAX Ada also provides two additional repre-
sentation attributes which may be of benefit.

10. Pragma INTERFACE: Full Support. While the ability to interface with other languages
is supported, it may involve considerable labor to achieve the desired result. Note that
VAX Ada allows users to specify the details of parameter passing.

11. Support Facilities: Full Support. In general we found the documentation and debug-
ger to be excellent. Note, however, that the release notes are difficult to use.

The support for representation clauses and implementation-dependent features by VAX Ada exhibits
some variation. In some cases, such as data types, there is more support than required by the
language. In other cases, notably address clauses, there is only minimal support, or the support
provided has restrictions as to details of implementation. The results illustrate the compiler-
dependent aspects of support provided for representation clauses and implementation-dependent
features, and point out that the selection of a particular compiler must be made with extreme care.

CMU/SEI-87-TR-17

The results presented in this report are of a qualitative nature. They describe the support for a
particular aspect of representation clauses and implementation-dependent features. Support for a
language feature is clearly different from the performance of the compiler or the assessment of the
effect of use of the feature. Issues of the latter type are principally quantitative in nature.

CMU/SEI-TR-17

CMU/SEI-87-TR-17

3. Relation to Examples in Volume I
In the preceding chapter, we presented a synopsis of the support provided by the VAX Ada compiler
for representation clauses and implementation-dependent features. The synopsis abstracted some
general results from the detailed answers.

It may be well, however, to consider the manner in which a report such as this would be used by
application developers. This is clearly an important issue and is now demonstrated. Thus, in the first
volume of this series, reference [2], a number of case study examples were presented. Those ex-
amples were drawn from the mission-critical systems community and contain certain characteristics
representative of problems typically encountered.

A brief statement of the problem for each example in reference [2] is presented below. The imple-
mentation of the particular example is then considered, based on the VAX Ada compiler which is
hosted and targeted for the MicroVAX. The ability to affect a solution to the stated problem is
presented. The discussion is based on the results presented in Appendix I. That is, we provide
specific references to the questions (and answers) deemed relevant for the example under considera-
tion. It is believed that such a procedure illustrates the manner in which a report such as this may be
used by application developers.

In the following paragraphs, references are made to the questions and answers appearing in Appen-
dix I. Questions and answers are referenced by category letter followed by the number of the ques-
tion. For example, "F.3" refers to question 3 under category F, which is Record Representation
Clauses.

In Section 5.2 of the first report in this series, reference [2], an introductory example was given
illustrating the use of representation clauses. The example was that of a message header that
appears in every message used for communications between a shipboard Inertial Navigation System
(INS) and some external computer (EC). This example illustrates the length, enumeration, and
record clauses, with data of type integer and enumeration. The requirements for this example are
within the following restrictions:

1. The size specified in a length clause for a discrete type must not exceed 32 bits (as
stated in D.2).

2. Integer codes given for enumeration literals in an enumeration representation clause
must be representable as a 32-bit integer (as stated in E.1).

3. Record components of a discrete type must be specified with 32 bits or less in a com-
ponent clause (see F.3).

4. Record components are allowed to overlap storage unit boundaries (see F.4).

Also, the assumed value of SYSTEM.STORAGEJJNIT for the examples is equal to eight which is the
default value for VAX Ada. Thus, this implementation would be valid for VAX Ada. A note should be
made that as stated in A.2, VAX Ada ordering of bits and storage units is right to left, and these
examples use left to right ordering. Thus, when examining the actual contents of memory, the results
will be different from those implied in the diagrams. If right to left ordering is required, say by some
external system, then the code presented in these examples will need to be changed.

CMU/SEI-TR-17

The second example, given in Section 5.3 of reference [2], is that of a Test Message which is used to
test the communications interface between the INS and EC. This example contains a message
header (implemented in the previous example) and integer test data. As in the last example, the
requirements here are within the restrictions listed in F.3 that the specified size for a discrete type
must not exceed 32 bits, and in F.4 that storage unit boundary overlaps are allowed. Therefore, this
implementation would also be valid for VAX Ada.

The next example, in Section 5.4 of reference [2], is slightly more complicated than the previous
examples in that it contains both fixed- and floating-point data. A navigation message is the example,
and it is used to send data such as ownship latitude, longitude, and speed to an EC. This example
contains a requirement that fixed-point data be represented in less than 32 bits. VAX Ada represents
fixed-point types in 32 bits as discussed in B.2. Based on this and the restriction listed in F.3 that
components of all types except discrete types must be specified in a record representation clause
with the actual size of the component, this implementation is illegal for VAX Ada. To implement this
example on VAX Ada, a conversion routine must be considered that converts the actual data field in
the message to the default VAX Ada 32-bit fixed-point representation. This will be the representation
from which calculations are performed.

The fourth example, Section 5.5 of reference [2], illustrates an implementation of analog conversion.
In this example, ship heading, roll, and speed data is DMA mapped to particular addresses and must
be converted into actual values. The requirement that data are DMA mapped was met by the use of
address clauses. This example would not be valid on VAX Ada for the following reasons:

1.SYSTEM.STORAGEJJNIT is 24 bits for this example, and VAX Ada
SYSTEM.STORAGEJJNIT is 8 and this cannot be changed with pragma
STORAGE_UNIT (as indicated in J.4).

2. Pragma SHARED is not supported (see J.6).
3. VAX Ada requires integer literals used in an address clause be converted to a value of

type SYSTEM.ADDRESS by invoking a VAX Ada specific function (as given in G.1).

Note that the latter two constraints are easily rectified with the use of VAX Ada defined pragma
VOLATILE instead of pragma SHARED and with the inclusion of the appropriate function calls for the
integer to SYSTEM.ADDRESS conversion.

In Section 5.6 of reference [2], an example of a message checksum was given. This function com-
putes the checksum of the navigation message that was implemented in Section 5.4 of reference [2]
and discussed above. Recall that the implementation of the navigation message was invalid for VAX

Ada. Thus, this checksum implementation would be invalid since it depends on that message imple-
mentation. A general-purpose checksum routine based on the use of the generic function
UNCHECKED_CONVERSION and dealing with valid message implementations would be legal for
VAX Ada since the following restrictions are met:

1. The size specified for a discrete type must not exceed 32 bits (as stated in D.2).

2. VAX Ada supports UNCHECKED_CONVERSION (reported in H.3).
3. The target type for the conversion is a legal type for VAX Ada (as shown in H.4).

CMU/SEI-87-TR-17

The final example given in reference [2], Section 6.4.2, illustrates the use of pragma INTERFACE.
The problem in this example is the need to allocate and access some data structure containing data
and status information for an INS gyro. As part of this problem, a conversion must be performed to
obtain a 32-bit, fixed-point quantity that has 15 bits of precision from arbitrary fixed-point quantities.
This conversion was performed by an assembler routine that is accessed via pragma INTERFACE
with representation attributes providing the appropriate parameters to that routine. This example is
compilable on VAX Ada with the following providing relevant information to verify this:

1. There are no restrictions on the use of 'ADDRESS (see 1.1).
2. There are no restrictions on the use of "FIRST_BIT (see 1.4).
3. There are no restrictions on the use of 'LAST_BIT (see I.5).
4. Pragma INTERFACE is supported (see J.5).

The preceding has illustrated the use of results presented in this report to assess problems that are
representative of mission-critical systems. The purpose in presenting the above discussion, there-
fore, is to illustrate how reports such as this may be used. It is to be noted that the emphasis in the
above discussion has been on application of qualitative results. That is, the emphasis is more toward
obtaining a solution to a problem, as opposed to an assessment of how "well" the solution imple-
ments the problem requirement. Results of the latter type, requiring performance information, must
be considered from the perspective of a quantitative evaluation of the VAX Ada compiler.

CMU/SEI-TR-17

10 CMU/SEI-87-TR-17

4. Summary
This report is one of a series dealing with the use of representation clauses and implementation-
dependent features in Ada. This report provides a qualitative assessment of the VAX Ada compiler,
Version 1.3. Subjective criteria were established to provide an overall assessment of the support
provided by this compiler for representation clauses and implementation-dependent features. In gen-
eral, this compiler provides support with minor limitations for the implementation of representation
clauses and implementation-dependent features. Some exceptions, however, have been noted.

This report may be used in conjunction with the results of a detailed experimental assessment of the
VAX Ada compiler to determine its suitability for specific applications.

CMU/SEI-TR-17 11

12 CMU/SEI-87-TR-17

References
1. Reference Manual for the Ada Programming Language, Department of Defense MIL-

STD-1815,1983.
2. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and

Implementation-Dependent Features in Ada: I. Overview, CMU/SEI-87-TR-14, ESD-
TR-87-115, July 1987.

3. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and
Implementation-Dependent Features in Ada: HA. Evaluation Questions, CMU/SEI-87-
TR-15, ESD-TR-87-116, July 1987.

4. B. Craig Meyers and Andrea L. Cappellini, The Use of Representation Clauses and
Implementation-Dependent Features in Ada: IIB. Experimental Procedures,
CMU/SEI-87-TR-18, ESD-TR-87-126. July 1987.

5. VAX Ada, Language Reference Manual, DEC, February 1985.
6. VAX Ada, Run-Time Reference Manual, DEC, February 1985.
7. VAXA/MS, Volume 7, MACRO and Instruction Set Reference Manual, DEC, September

1984.
8. VAX Ada, Developing Ada Programs on VAX/VMS, DEC, February 1985.
9. VAX Ada, Version 1.1, 1.2, 1.3, Release Notes, DEC, December 1986.

10. Digital Equipment Corporation, private communication, June 23,1987.
11. VAX/VMS, Volume 4B, Linker Reference Manual, DEC, September 1984.

CMU/SEI-TR-17 13

14 CMU/SEI-87-TR-17

Appendix I: Questions Relevant to the Use of
Representation Clauses and Implementation-Dependent
Features

A. General

1. What Is the basic unit of SYSTEM.STORAGEJJNIT? (This Is useful when defining record
layouts.)

One byte, or eight bits. [VLRM, page 13-11]

2. What Is the ordering of allocation for storage units? Is It left-to-right or right-to-left with
respect to each other? How are bits numbered within storage units? Is It left-to-right or
right-to-left? Does the numbering always begin with zero? (This is useful when defining
record layouts and verifying the actual allocation of record layouts.)

The storage unit ordering scheme used by VAX is right to left and bits within a storage unit are also
numbered right to left, starting with 0. The following example illustrates this. Suppose we had the
value 1 stored in address 6, the value 0 stored in address 7, and the value 15 stored in address 8. If
we examined 24 bits of storage starting at address 6, we would get the following:

00001111 00000000 00000001

3. It Is also appropriate to consider the role of the underlying architecture, particularly
regarding data conversions from representation clauses to other formats. Does the machine
Include Instructions for inserting and extracting bit-length fields? What are the restrictions on
the use of such Instructions (for example, what is the maximum field size to which an instruc-
tion may be applied)?

The VAX instruction set provides three particular instructions which may be used to insert and extract
variable-length bit fields. One instruction, opcode INSV, inserts the high-order bits of the source field
into the target field specified by position, size and base; where base is the effective address (byte
aligned), position is the beginning bit (within the byte addressed) of the field; size is the number of bits
in the field.

A second instruction, opcode EXTZ, replaces the high-order bits of the target field with the sign-
extended source field specified by position, size and base. A third instruction, opcode EXTZV, is
similar to the EXTZ instruction. In this case, the target field is replaced with a zero-extended source
field. In all three cases above, the size of the field to insert or extract must be smaller than 32 bits.

Note that the instruction set does not provide for any general-purpose bit insert and extract routines.
Such an instruction would, for example, allow the source and target fields to both be specified by a
position, size and base, and not necessarily restricted to accessing high-order bits in some storage
unit.

[VMIS, pages 9-40,9-42]

CMU/SEI-TR-17 15

4. Is pragma OPTIMIZE supported? If so, are there any restrictions on its use?

Yes. This pragma is only allowed immediately within a declarative part of a body declaration.

[VLRM, Appendix B, page B-8]

5. The use of representation clauses may present unusual problems throughout design and
coding. What facilities exist for verifying results when representation clauses are used? We
are speaking here of the debugger; thus, are there restrictions on the use of the debugger
when representation clauses are used?

The debugger provides commands for accessing addresses of variables and examining the contents
of those addresses (in binary, decimal, hexadecimal, or octal) which can be used to verify the results
of a representation clause. [DAP, page 7-55] The debugger also allows simultaneous display of
source code and machine code, stepping through the machine code and displaying the contents of
registers, for example.

The debugger does not provide support for the biasing mechanism discussed in question F.3; that is,
the debugger displays the biased value stored in a record component instead of the actual value
when queried. [RN]

Also, according to a DEC representative, there is no debugger support for variables specified by
address clauses.

6. Does the compiler provide a load map that contains sufficient details to identify the loca-
tion of quantities specified using representation clauses?

The Ada Compilation System (ACS) linker provides an option to create an image map. There are
several options for tailoring the information provided in the map. Information such as object module
synopsis, module relocatable synopsis, and a symbol cross-reference section for global symbols can
be obtained.

The information provided is not sufficient since it does not, for example, give address location of
variables/objects within a module.

[VLINK]

7. Are there any restrictions on representation clauses?

In addition to the specific restrictions discussed in this report, the following are not allowed:

• a representation clause for a generic formal type or a type that depends on a generic
formal type

• a representation clause for a composite type that has a component or subcomponent of
a generic formal type or a type derived from a generic formal type

[VLRM, Appendix F, page F-7]

16 CMU/SEI-87-TR-17

8. Compiler Implementors currently have the option as to what degree, If any, the features In
Chapter 13 of the Reference Manual for the Ada Programming Language will be supported. It Is
conceivable that upgraded versions of an implementation will enhance the support originally
available for such features as representation clauses. How Is the documentation upgraded?
Is It by release notes or page changes? The manner In which this Is accomplished can affect
the ease with which documentation can be used.

For our documentation, we received release notes in the form of a VMS HELP facility. The format of
the release notes made it very difficult to find relevant information. Page changes would be more
convenient for the user.

CMU/SEI-TR-17 17

B. Data Types Supported

1. What are the basic implementations of Integer types?

VAX Ada provides for three implementations of integer types. These are: INTEGER, represented in
32 bits with a range of -231 .. 231-1; SHORTJNTEGER, represented as 16 bits with a range of -215 ..
215-1; and SHORT_SHORT_INTEGER, represented as 8 bits with a range -128 .. 127. [VLRM, page
3-20]

2. What are the basic Implementations of fixed-point types?

Each fixed-point type in VAX Ada occupies 32 bits [VLRM, page 3-34]. Values of fixed-point types are
represented as signed, twos complement (binary) numbers with an implicit binary scale factor. [VRT,
page 3-12]

Note the reference to an implicit binary scale factor in the above. As an illustration, a fixed-point type
which has a value of small equal to 2s and has the value 1.5 is represented internally in the following
binary format:

00000000 00000000 00000000 01100000

The low-order six bits in the above are for storage of the fraction value, which, in this case, is 0.5.
The precise manner in which a fixed-point type scale factor is implemented is not documented.

3. What are the basic Implementations of floating-point types?

Four different implementations of floating-point types are supported by VAX Ada. They are: FLOAT,
represented as 32 bits which provides 6 (decimal) digits of precision; LONG_FLOAT, which may be
represented as either 64 bits with 9 digits of precision or 64 bits with 15 digits of precision; and
LONG_LONG_FLOAT, represented as 128 bits with 33 digits of precision. The choice of represen-
tation for the LONG_FLOAT type is determined by the use of a VAX-specific pragma. [VLRM, page
3-27]

4. Does the compiler provide predefined, unsigned data types? If not, Is It permissible for a
user to define these types? For example, is the following legal:

type Unsigned_SmallJnt Is range 0 .. 7;
forUnsigned_Small_lnt'SIZE use 3;

VAX Ada supports several unsigned data types and operations for those types. For example, pack-
age SYSTEM contains the following:

type UNSIGNED_BYTE Is range 0 .. 255;
forUNSIGNED_BYTE'SIZE use 8;

And, functions for 'and', 'not', "or" and 'xor' are provided for this type. [VLRM, page 13-23]

VAX Ada also allows the user to define types for unsigned integers. [VRT, page 3-21]

18 CMU/SEI-87-TR-17

C. Pragma PACK

1. Does the compiler support the use of pragma PACK?

Yes. [VLRM, page 13-3]

2. What restrictions are placed on the use of pragma PACK? For example, are there certain
types that may or may not be packed?

Pragma PACK has an effect in VAX Ada for record or array declarations only if the record or array
components are packable. A component is packable if its type allows it to be aligned on an arbitrary
bit boundary. The following types are packable:

• integer

• enumeration

• record: where the record type has a compile-time constant size less than or equal to 32
bits and all its components are packable. The size of a record type is computed as the
position of the last component that physically appears in the record layout plus the size
of the last component (VRT, page 3-15]

• array: if the array type is itself a packed array of packable arrays or if it is an array of 1 -bit
components

The following types are not packable:

• fixed point

• floating point

• address

• access

• task

[VRT, page 3-19]

CMU/SEI-TR-17 19

D. Length Clauses

1. Does the compiler support the use of length clauses? What are the restrictions on their
use?

Yes. There are no documented restrictions. [VLRM, page 13-4]

2. Are there restrictions on the use of the SIZE attribute designator in a length clause?

In VAX Ada, for a discrete type the size specified must not exceed 32 bits (object sizes may be
increased by the compiler for optimization purposes [RN]). The given size affects the internal repre-
sentation of integer and enumeration types as follows:

• integer, high-order bits are sign-extended

• enumeration: high-order bits are zero-extended when the range of the integer codes for
the enumeration literals is positive and sign-extended when the range includes negative
values [VRT, page 3-21]

For all other types, the given size must equal the default size for that type, e.g., for fixed-point types,
the size specified must equal 32 (bits). [RN]

For discrete types, the given size becomes the default allocation for all objects and components (in
arrays and records) of that type. [VLRM, page 13-5]

3. Are there restrictions on the use of the STORAGESIZE attribute designator In a length
clause?

The use of this specification in a length clause determines the amount of memory from which objects
of the specified access type are allocated, and VAX Ada refers to that allocatable memory as the
collection size. The collection size specified is interpreted as follows:

• // greater than zero: the specified size is rounded up to the next integral number of
pages (where a page is 512 bytes), and that value is used as the initial size of the
collection. The size of the collection is not extended when the amount is exhausted and
the exception STORAGE_ERROR is raised. [VRT, page 3-17]

• If equal to zero: no initial storage is allocated; storage is allocated on an as needed
basis until all virtual memory is depleted. (This is the default behavior.)

• If less than zero: a CONSTRAINT_ERROR is raised.

[VLRM, page 13-5]

When there are several collection sizes to specify, it is recommended that values chosen for the
group of collection sizes be integrally related to improve efficiency of a program. For example, the
group of values 512*4, 512*8, and 512*12 is better than the group of values 512*2, 512*7, and
512*13. [RN]

20 CMU/SEI-87-TR-17

4. Are there restrictions on the use of the SMALL attribute designator in a length clause?

Consider a fixed-point type declared in the form:

<type_name> Is delta <delta_value> range <range_clause>

The default representation for a fixed-point type is that the value of small will be the largest integral
power of two which is not greater than the given <delta_value> and which satisfies the
<range_clause>.

When a value of small is specified in a length clause, the specified value may not exceed the default.
[VLRM, page 13-6]

5. When using a SIZE attribute designator in a length clause, the Reference Manual for the
Ada Programming Language states that the value of the expression specifies an upper bound
for the number of bits to be allocated. The presence of a range constraint or the use of a
predefined type Implicitly defines the maximum number of bits required to allocate objects. If
extra bits are specified In the length clause, are these extra bits allocated by the compiler?

Not only will VAX Ada allocate the extra bits if specified, but, as explained in question I.2, VAX Ada
rounds the size of a variable up to a multiple of 8 bits, though record components are subject to
packing and representation requirements. (Also see question D.2.)

6. Suppose a type, with associated length clause, has been specified storage where the
number of bits is not sufficient to store the specified range of values. For example, suppose
an Integer type with range 10 .. 13 Is defined, and three bits of storage are allocated for that
type. Is an error generated for this case? If no error Is generated by the compiler, how is a
case such as this treated?

How such cases are handled by VAX Ada is not documented. [VLRM, page 13-4] A test was per-
formed with the following:

type S is range 10 .. 13;
for S'Size use 3;

and an error was generated at compilation. Detailed experimentation is necessary to investigate this
further.

7. What Impact does the length clause have on the packing algorithm of composite types?

No impact. [DEC]

8. What is the effect of pragma OPTIMIZE (TIME) on storage allocation when length clauses
are used?

No effect. [DEC]

CMU/SEI-TR-17 21

9. What Is the effect of pragma OPTIMIZE (SPACE) on storage allocation when length
clauses are used?

No effect. [DEC]

10. What Is the effect of pragma PACK on storage allocation when length clauses are used?

No effect. [DEC]

22 CMU/SEI-87-TR-17

E. Enumeration Representation Clauses

1. Does the compiler support the use of enumeration representation clauses? What are the
restrictions on their use?

Yes. Each expression for the integer code must be representable as a 32-bit integer. Integer codes
can be negative. [VLRM, page 13-9]

2. Consider an enumeration type and associated enumeration representation clause where
the enumerated values specified are not contiguous Integers, such as:

type Name Is (Name_1, Name_2, Name_3, Name_4);
for Name use

(Name_1 *> 1, Name_2 => 5, Name_3 => 12, Name_4 -> 163);

The enumeration type may not be efficiently Implemented because of the noncontiguous na-
ture of the Integers specified in the enumeration representation clause, Illustrated above.
Hence, how are enumeration types represented Internally, particularly In the case where
enumeration clauses are specified with noncontiguous values?

Detailed experimentation is required for resolution of this.

3. What Is the effect of pragma PACK on storage allocation when enumeration represen-
tation clauses are used?

No effect. [DEC]

4. What Is the effect of pragma OPTIMIZE (TIME) on storage allocation when enumeration
representation clauses are used?

No effect. [DEC]

5. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when enumeration
representation clauses are used?

No effect. [DEC]

CMU/SEI-TR-17 23

F. Record Representation Clauses

1. Does the compiler support the use of record representation clauses? What are the
restrictions on their use?

Yes. There are no documented restrictions. [VLRM, page 13-9]

2. What are the restrictions on the use of the alignment clause in a record representation
clause?

The alignment clause must be an integer in the range of 1 ..512 and also an integral power of 2. In
other words, the alignment clause must have a value of 2n, where n is in the range zero through nine.
Depending on how the record objects are allocated, the following restrictions exist:

• For stack-allocated record objects: alignment is restricted to values 2" where n is in the
range zero to two.

• For dynamically allocated record objects: since all dynamically allocated objects are at
least longword (i.e., 4 bytes) aligned, alignment is restricted to values 2n where n is in the
range two through nine.

• For statically allocated record objects: there are no other restrictions.

[VLRM, page 13-10]

3. What are the restrictions on the use of component clauses In a record representation
clause?

Legal specifications must specify enough bits in the range to represent the component type; other-
wise the specification is illegal. Discrete type components must be specified with 32 bits or less. The
size specified for components of all other types must be equal to the actual size of the component.

Components that are not packable must be allocated on a byte boundary, whereas packable compo-
nents can be allocated without restrictions. (See also question C.2.)

[VLRM, page 13-11]

When record components are specified to be stored in an inadequate amount of space, the values
are biased — that is, predictably altered. This biasing occurs only when a component clause speci-
fies a very small amount of storage for the particular component. The method of biasing is to subtract
the COMPONENT_SUBTYPE'FIRST from the component value and store the remaining value in that
location. Restrictions on when biasing occurs, e.g., what constitutes a "small" amount of storage, are
not documented, and detailed experimentation must be employed to gather such information. [RN]

4. Are there restrictions on the overlap of record components with respect to the basic
machine storage unit? For example, If a machine has a SYSTEM.STORAGE_UNIT equal to 16
bits, is It permitted to have components of a record that are larger than this value?

If the specification is legal (as discussed in question F.3), boundary overlaps are permitted. That is,

24 CMU/SEI-87-TR-17

the size of record components can be greater than eight bits (SYSTEM.STORAGEJJNIT). Also, for
example, a component can begin at storage unit five, bit seven and have a length of five bits, thus
ending at storage unit six, bit three. [VLRM, page 13-11]

Variants can also be overlapped. [RN]

5. Consider the case when a record Is specified with a record representation clause. Where
is a record component placed that has no associated component clause?

Components named in a clause are allocated first, then the components not in the clause are al-
located in the order in which they are written in the type declaration. Specifically, where a component
is placed that has no clause depends upon the packed/unpacked allocation algorithm in effect and
requires detailed experimentation to resolve. [VLRM, page 13-11]

Preliminary results show that unnamed components are placed immediately after the last specified
component and in the order in which they appear in the record type. For example, a test was
performed with the following:

type Rec is
record

C1 : Integer;
C2 : Boolean;
C3 : Boolean;
C4 : Integer;

end record;

for Rec use
record

C2 at 0 range 0 .. 7;
C4at 100 range 0.. 31;

end record;

With component C2 allocated at address 9588, component C4 was allocated at address 9688, com-
ponent C1 was allocated at address 9692, and component C3 was allocated at address 9696.

6. What Is the effect of pragma OPTIMIZE (TIME) on storage allocation when record repre-
sentation clauses are used?

No effect. [DEC]

7. What is the effect of pragma OPTIMIZE (SPACE) on storage allocation when record repre-
sentation clauses are used?

No effect. [DEC]

8. What Is the effect of pragma PACK on storage allocation when record representation
clauses are used?

No effect. [DEC]

CMU/SEI-TR-17 25

G. Address Clauses

1. Does the compiler support the use of address clauses? What are the restrictions on their
use?

VAX Ada supports address clauses with the restriction that the simple name specified must be the
name of a variable. VAX Ada does not support address clauses that name constants, subprograms,
packages, tasks, or single entries. VAX Ada pragmas for importing or exporting objects are not
allowed in combination with an address clause, the result of which would be to ignore the pragma.
[RN]

The simple expression given in the address clause must be of type SYSTEM.ADDRESS, and VAX

Ada provides a conversion function, TO_ADDRESS, in package SYSTEM which converts a universal
integer to type ADDRESS. This function must be invoked when specifying addresses with integer
literals. [RN]

The release notes do not specify what range of universal integers will be converted to valid addresses
(e.g., addresses that are user accessible). The range of universal integers converted to addresses is
0.. MAXJNT. [DEC]

2. What Is the type SYSTEM.ADDRESS?

The declaration of type SYSTEM.ADDRESS is not documented [VLRM, page 13-17; Appendix F,
page F-3]. VAX Ada interprets values of type SYSTEM.ADDRESS as integers in the range 0 ..
MAXJNT, and they refer to addresses in the user half of the VAX address space. If an address falls
outside this range, the code would be enoneous, though no explicit check would be performed; thus,
there is no guarantee that an exception would be raised. [VLRM, page 13-17]

The storage size of objects of type SYSTEM.ADDRESS is 32 bits. [VRT, page 3-18]

3. What Is the effect of pragma OPTIMIZE (TIME) on storage allocation when address
clauses are used?

No effect. [DEC]

4. What Is the effect of pragma OPTIMIZE (SPACE) on storage allocation when address
clauses are used?

No effect. [DEC]

5. Does the compiler enforce strong typing In the presence of address clauses? For ex-
ample, Is the following recognized as erroneous by the compiler:

type T_1 Is range 0 ..100;
0_1 :T_1;
for 0_1 use af16#1000#;

26 CMU/SEI-87-TR-17

type T_2 Is digits 2 range 0.0 .. 100.0;
0_2: T_2;
forO_2useaM6#l000#;

This example compiles without errors on VAX Ada with the appropriate function calls added as dis-
cussed in G.1. Execution of this example will depend on whether the specified addresses are acces-
sible.

6. Does the compiler or linker recognize potential conflicts when address clauses are used?
For example, suppose an address clause Is present that references some address, say
X. Assume that the address X Is such that It lies within the address space of generated code.
How Is this case treated by the compiler and/or linker?

No diagnostics are given by the compiler or linker for this case. [DEC]

CMU/SEHR-17 27

H. Data Conversion and Assignment

1. How Is conversion accomplished between values of a type specified by the default repre-
sentation and a type specified with a representation clause? (This refers to the use of a new
(derived) type that Is defined In terms of a representation clause.)

Detailed experimentation is required for resolution of this.

2. For conversions between objects of different types, does the compiler produce In-line
code or generate a call to a library routine to accomplish the conversion?

Preliminary results where an integer object is explicitly converted to a floating-point type (and vice
versa) and an integer object is converted to a fixed-point type (and vice versa) show the VAX Ada
compiler produces in-line code to accomplish the conversion. Detailed experimentation is required to
fully investigate this issue.

3. Is support of the generic function UNCHECKED CONVERSION provided?

Yes. [VLRM, page 13-55]

4. Are there any restrictions on the use of UNCHECKED_CONVERSION? For example, are
there any restrictions on the source and target types for UNCHECKED CONVERSION? DO

they have to be the same size?

There are no restrictions on the actual subtype corresponding to the formal type SOURCE. The
following are restrictions on the actual subtype corresponding to the formal type TARGET:

• must not be an unconstrained array type

• must not be an unconstrained type with discriminants

When the target type is a type with discriminants, the resulting value from a call to an instantiation of
UNCHECKED_CONVERSION is checked to assure that the discriminants satisfy the constraints of
the actual subtype.

For size inconsistencies between source and target, the following actions will be taken:

• If the source size is greater than the target size: then the high-order bits are truncated.

• If the source size is less than the target size: then the value is extended with zeros.

[VLRM, page 13-56]

28 CMU/SEI-87-TR-17

I. Representation Attributes

1. What are the restrictions on the use of the 'ADDRESS representation attribute? How
does the compiler Interpret the use of this attribute?

There are no documented restrictions on the use of this attribute. Programming considerations for
working with address values are given in [VRT, page 8-3]. VAX Ada interpretations of this attribute
are the following:

• Variables: the value is the actual address of the variable (which can be either statically or
dynamically allocated). Use of the attribute forces the variable to be stored in memory
rather than a register. If the variable is not stored on a byte boundary, the value is the
address of the lowest byte that holds the variable

• Constants: the value is the memory address of the constant, though if queried twice, the
value returned may not be the same address

• Named Numbers: the value is ADDRESS_ZERO

• Access Objects: the value is the address of the designated object and the attribute is
subject to an ACCESS_CHECK

• Record Objects: the attribute is the address of the first component and is subject to
DISCRIMINANT_CHECK for an object in a variant part

• Array Component or Slice: the attribute is the address of the component or slice and is
subject to INDEX_CHECK for the component or slice

• Package Units: the value is ADDRESS_ZERO

• Subprograms: when named in a pragma EXPORT, the value is the address that would
be exported [see VLRM, page 13-45, for a discussion on exporting subprograms]. For
subprograms not exported, the value is ADDRESS_2ERO

[VLRM, page 13-28]

2. What are the restrictions on the use of the 'SIZE representation attribute? How does the
compiler Interpret the use of this attribute?

There are no documented restrictions on the use of this attribute.
VAX Ada interpretations of this attribute are the following:

• Type or Subtype: the value must be in the range 0 .. MAXJNT, where MAXJNT equals
2^-1; otherwise NUMERIC_ERROR is raised

• Variables or Constants: the value is its size in bits

• Named Numbers: the value is 0

• Record Component, the attribute is the size of the component and is subject to a
DISCRIMINANT_CHECK for an object in a variant part

• Array Component or Slice: the attribute is the size of the component or slice and is
subject to an INDEX_CHECK for the component or slice

[VLRM, page 13-29]

CMU/SEI-TR-17 29

In VAX Ada, the results of TSIZE and O'SIZE, where T is a type or subtype and O is an object of that
type T, will sometimes be different. TSIZE always returns the minimum number of bits needed to
allocate any possible object of type T, whereas O'SIZE returns the number of bits actually allocated
for an object. In VAX Ada, the size of a variable is always rounded up to a multiple of 8 bits, where
bits are padded to enforce at least byte alignment. For discrete types, the size is always 8,16, or 32.
For example, suppose we had the following:

type Boon 7 Is new Boolean;
forBool17'SIZEt/se17;

Bool17_Object: BooM 7;

The value of Bool17'SIZE is 1, whereas the value of Bool17_Object'SIZE is 32 (17 bits plus 15
padding bits).

For C'SIZE, where C is a component of a record, if a record representation clause is present, padding
does not occur. When pragma PACK is specified the amount of padding, if any, is determined by the
storage allocation algorithm used by the compiler.

[VRT, page 3-27]

3. What are the restrictions on the use of the 'POSITION representation attribute for a record
component?

There are no documented restrictions. [VLRM, page 13-30]

4. What are the restrictions on the use of the 'FIRST_BIT representation attribute for a
record component?

There are no documented restrictions. [VLRM, page 13-30]

5. What are the restrictions on the use of the L ASTBIT representation attribute for a record
component?

There are no documented restrictions. [VLRM, page 13-30]

6. What Is the effect of pragma OPTIMIZE (TIME) on the values of the representation
attributes?

Detailed experimentation is required for a resolution of this.

7. What is the effect of pragma OPTIMIZE (SPACE) on the values of the representation
attributes?

Detailed experimentation is required for a resolution of this.

30 CMU/SEI-87-TR-17

J. Miscellaneous

1. Suppose an object has been allocated storage where the number of bits Is not sufficient
to store the specified range of values. For example, suppose an object has been allocated
three bits of storage, but is specified to be in the range 10 through 13. Is an error generated
for this case? If no error is generated by the compiler, how is a case such as this treated?

For objects that are components of a record where the component clause given in the record repre-
sentation clause does not specify adequate storage, VAX Ada provides a biasing mechanism dis-
cussed in question F.3. It should be noted, though, that an example of this kind given in VLRM, page
13-13, states that this example is illegal.

How VAX Ada handles cases other than when an object is a component of a record is not docu-
mented. SeeD.6. [VLRM, page 13-4]

2. Does the compiler support the use of pragma SUPPRESS?

No. [VLRM, page 11-15]

3. What restrictions are placed on the use of pragma SUPPRESS? For example, can every
check be suppressed?

Not applicable to VAX Ada. See also J.6.

4. Is pragma STORAGE_UNIT supported? If so, are there any restrictions on the argument?

Pragma STORAGE_UNIT is supported with the restriction that the value given must be 8 (bits).
Since SYSTEM.STORAGEJJNIT is by default 8, one can say that VAX Ada does not really support
this pragma. [VLRM, page 13-18]

5. Is pragma INTERFACE supported? if so, are there any restrictions on the allowable
forms and places of parameters and calls?

Pragma INTERFACE is supported but is coupled to the VAX Ada defined pragmas
IMPORT_FUNCTION, IMPORT_PROCEDURE, and IMPORT_VALUED_PROCEDURE. Pragma IN-
TERFACE is used in combination with one of the previous pragmas. [These pragmas are discussed
in VLRM, Section 13.9a1.1. and RN]

If pragma INTERFACE is used without one of the above pragmas, the following interpretation is taken
by default:

• the language name specified is ignored

• if the subprogram name applies to a single subprogram, a default import pragma is
assumed; thus, for a function the default is pragma IMPORT_FUNCTION and for a pro-
cedure the default is pragma IMPORT_PROCEDURE

• if the subprogram name applies to two or more subprograms (overloaded), the pragma
applies to them all, and a warning is given if the appropriate import pragmas are not
given for all subprograms

CMU/SEI-TR-17 31

The subprogram name must be an identifier or string literal.

The following rules exist for the use of pragma INTERFACE:

• if a subprogram body is given later for a subprogram named with this pragma, the body
is illegal

• this pragma is illegal if it names a subprogram body

• if two pragma INTERFACES are given, the latter is illegal

If pragma INTERFACE and pragma INLINE are used together, pragma INLINE will always be ig-
nored.

[RN]

[Refer to VLRM, Section 13.9a, page 13-37, for a detailed discussion of import/export pragmas (for
subprograms, objects, and exceptions) and parameter passing, and to the release notes for added
facilities.]

6. Is pragma SHARED supported? If so, are there any restrictions on its use?

No, it is not supported. [VLRM, page 9-26]

7. Are there other implementation-dependent features supported such as pragmas or
attributes?

In addition to the VAX Ada supplied pragmas discussed in question J.5, the following relevant prag-
mas are provided by VAX Ada:

• Pragma AST_ENTRY specifies that the given entry may be used to handle a VAX/VMS
asynchronous system trap. This is one alternative to using address clauses for handling
interrupts.

• Pragma LONG_FLOAT specifies which representation, either D_FLOAT or G_FLOAT, to
be used for the predefined type LONG_FLOAT.

• Pragma VOLATILE specifies that the given variable may be modified asynchronously
and instructs the compiler to obtain the value of the variable from memory each time it is
used. This pragma is an alternative to pragma SHARED.

• Pragma SUPPRESS_ALL specifies that all run-time checks in the enclosing compilation
unit be suppressed.

[VLRM, Annex B]

The following representation attributes, which are relevant to the area of representation clauses and

implementation-dependent features, are provided by VAX Ada:

• X'MACHINE_SIZE yields the number of machine bits to be allocated for variables of the
type or subtype X and includes any padding bits for allocating a variable.

• X'BIT yields the bit offset within the storage unit that contains the first bit of storage
allocated for the object X.

32 CMU/SEI-87-TR-17

fVLRM, page 13-29]

Also, VAX Ada provides subprograms in package SYSTEM to read and write to device registers. [RN]

CMU/SEI-TR-17 33

34 CMU/SEI-87-TR-17

UNLIMITFn, man A<:unrn
•CCURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
lb. RESTRICTIVE MARKINGS

NONE
2a. SECURITY CLASSIFICATION AUTHORITY

N/A
2b. OECLASSIF ICATION/OOWNGRAOING SCHEDULE

N/A

3. DISTRIBUTION/AVAILABILITY OF REPORT

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

CMU/SEI-87-TR-17

5. MONITORING ORGANIZATION REPORT NUMBER(S)

ESD-TR-87-118
6a. NAME OF PERFORMING ORGANIZATION 5b. OFFICE SYMBOL

(If applicable)

SOFTWARE ENGINEERING INSTITUTEI SEI

7a. NAME OF MONITORING ORGANIZATION

SEI JOINT PROGRAM OFFICE
6c. ADDRESS (City. Stale and ZIP Coda)
CARNEGIE MELLON UNIVERSITY
PITTSBURGH, PA 15213

7b. ADDRESS (City. Slate and ZIP Code)
ESD/XRS1
HANSCOM AIR FORCE BASE, MA 01731

am NAME OF FUNDING/SPONSORING
ORGANIZATION

SEI JOINT PROGRAM OFFICE

8b. OFFICE SYMBOL
(If applicable)

SEI JPO

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

F1962885C0003

Be. ADORESS (City. State and ZIP Code)

CARNEGIE MELLON UNIVERSITY
SOFTWARE ENGINEERING INSTITUTE JPO
PITTSBURGH. PA 15213

10. SOURCE OF FUNDING NOS.

PROGRAM
ELEMENT NO.

11. TITLE (Include Security Classification)

The Use of Representation Clauses and Implem4ntation-Depe^dent Features in Ada

PROJECT
NO.

N/A

TASK
NO.

N/A

WORK UNIT
NO.

N/A

12. PERSONAL AUTHOR(S) IIIA. Qualitative Results for VAX Ada Version 1.3
B. Craig Meyers and Andrea L. Cappellini

13a. TYPE OF REPORT

FINAL
13b. TIME COVERED

FROM TO

14. DATE OF REPORT (Yr.. Mo.. Day)

July 1987
15. PAGE COUNT

36
16. SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB. GR

18 SUBJECT TERMS (Continue on reverse if necessary and identify 6y bloc* number)
representation clauses in Ada
implementation-dependendent features in Ada
VAX Ada Compiler, Version 1.3

19. ABSTRACT (Continue on reverse if neceuary and identify by block number)

This report, one in a series, provides a qualitative assessement of the support of
representation clauses and implementation-dependent features in Ada provided by the
VAX Ada compiler, Version 1.3. The evaluation questions that were presented in a
previous report of this series form the basis of the qualitative assessment. A
subjective evaluation of the support provided for these features is also presented.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

UNCLASSIFIED/UNLIMITED XX SAME AS RPT. D OTIC USERS £3

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED, UNLIMITED

22a. NAME OF RESPONSIBLE INDIVIDUAL

KARL SHINGLER
22b TELEPHONE NUMBER

(Include Area Code)
(412) 268-7630

HO FORM 1473 R3 APR

22c. OFFICE SYMBOL

SEI JPO

EDITION OF 1 JAN 73 IS OBSOLETE. UNLIMITED, UNCLASSIFIED

